tweets
1 row where retweet_count = 27, retweeted = 0 and source = "295366d0fb34352a1961af2413827f072adefdb9" sorted by lang
This data as json, CSV (advanced)
Suggested facets: created_at (date)
id | user | created_at | full_text | retweeted_status | quoted_status | place | source | truncated | display_text_range | in_reply_to_status_id | in_reply_to_user_id | in_reply_to_screen_name | geo | coordinates | contributors | is_quote_status | retweet_count | favorite_count | favorited | retweeted | possibly_sensitive | lang ▼ | scopes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1433807042590875654 | Peter Yang 84490044 | 2021-09-03T15:00:12+00:00 | You look more into this space and realize it's the opposite of your job. There are no OKRs, no metrics, no career ladders, not even that many PMs. People are just building stuff because they're passionate about it. | Typefully 295366d0fb34352a1961af2413827f072adefdb9 | 0 | [0, 216] | 1433807041403916296 | 84490044 | petergyang | 0 | 27 | 431 | 0 | 0 | en |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [tweets] ( [id] INTEGER PRIMARY KEY, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [full_text] TEXT, [retweeted_status] INTEGER, [quoted_status] INTEGER, [place] TEXT REFERENCES [places]([id]), [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT, FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]), FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id]) ); CREATE INDEX [idx_tweets_source] ON [tweets] ([source]);