home / twitter

tweets

This is data scraped from swyx's timeline! See blog post

6 rows where in_reply_to_screen_name = "rachelnabors" and user = 33521530 sorted by lang

✎ View and edit SQL

This data as json, CSV (advanced)

Suggested facets: source, retweet_count, favorite_count

created_at (date) 5 ✖

  • 2021-11-21 2
  • 2021-08-12 1
  • 2021-09-15 1
  • 2021-10-24 1
  • 2021-11-23 1

in_reply_to_screen_name 1 ✖

  • rachelnabors · 6 ✖
id user created_at full_text retweeted_status quoted_status place source truncated display_text_range in_reply_to_status_id in_reply_to_user_id in_reply_to_screen_name geo coordinates contributors is_quote_status retweet_count favorite_count favorited retweeted possibly_sensitive lang ▼ scopes
1425634237361754117 swyx 33521530 2021-08-12T01:44:23+00:00 @rachelnabors this piece by @wes_kao nails how the CBC trend solves for completion https://future.a16z.com/cohort-based-courses/       Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [14, 106] 1425505298337370112 9550352 rachelnabors       0 0 6 0 0 0 en  
1437945199314063362 swyx 33521530 2021-09-15T01:03:45+00:00 @rachelnabors i like how you phrase it like you’re still gonna miss the meeting, but at least now you do it knowingly       Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [14, 117] 1437944644625747970 9550352 rachelnabors       0 0 33 0 0   en  
1452424003184852992 swyx 33521530 2021-10-24T23:57:21+00:00 @rachelnabors hmm. maybe 1hr podcast chat with me? 👼 i could convert into writeup after. been doing this at work and its been a good leverage of limited time of the subject matter expert (aka you) https://docs.temporal.io/blog/gremlin-podcast       Twitter Web App 1f89d6a41b1505a3071169f8d0d028ba9ad6f952 0 [14, 221] 1452412964368171008 9550352 rachelnabors       0 1 2 0 0 0 en  
1462517735745806337 swyx 33521530 2021-11-21T20:26:15+00:00 @rachelnabors THAT LOOKS LIKE @brian_d_vaughn’s Gatsby!!! your face is in such perfect bliss that “awww yeeeeauh” actually works as alt text lol       Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [14, 144] 1462482970384781323 9550352 rachelnabors       0 0 2 0 0   en  
1462551617128050692 swyx 33521530 2021-11-21T22:40:53+00:00 @rachelnabors @justafish @brian_d_vaughn @TiredCoder i wanna see Brian play a “identify this cat” game now, i enjoy random talents like that       Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [53, 140] 1462550807820201991 9550352 rachelnabors       0 0 2 0 0   en  
1462992096403472387 swyx 33521530 2021-11-23T03:51:11+00:00 @rachelnabors unintentional sick burn       Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [14, 37] 1462777093578702855 9550352 rachelnabors       0 0 5 0 0   en  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [tweets] (
   [id] INTEGER PRIMARY KEY,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [full_text] TEXT,
   [retweeted_status] INTEGER,
   [quoted_status] INTEGER,
   [place] TEXT REFERENCES [places]([id]),
   [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT,
   FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]),
   FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id])
);
CREATE INDEX [idx_tweets_source]
    ON [tweets] ([source]);
Powered by Datasette · Queries took 1506.798ms