home / twitter

tweets

This is data scraped from swyx's timeline! See blog post

1 row where in_reply_to_screen_name = "afadadolar" and user = 33521530 sorted by lang

✎ View and edit SQL

This data as json, CSV (advanced)

user 1 ✖

  • swyx · 1 ✖

is_quote_status 1 ✖

  • 0 1

in_reply_to_screen_name 1 ✖

  • afadadolar · 1 ✖

created_at (date) 1 ✖

  • 2021-09-28 1
id user created_at full_text retweeted_status quoted_status place source truncated display_text_range in_reply_to_status_id in_reply_to_user_id in_reply_to_screen_name geo coordinates contributors is_quote_status retweet_count favorite_count favorited retweeted possibly_sensitive lang ▼ scopes
1442904924493279232 swyx 33521530 2021-09-28T17:31:56+00:00 @protsaq thank you, really appreciate it! yeah when i set out to do this i felt like understanding the layers was a MAJOR breakthrough in understanding how different devs’ experiences differ!       Twitter for iPad 574fe4fa937eeb131136f7e3678f32d4ff3078d5 0 [9, 192] 1442885004284026893 1428836868129439752 afadadolar       0 0 1 0 0   en  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [tweets] (
   [id] INTEGER PRIMARY KEY,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [full_text] TEXT,
   [retweeted_status] INTEGER,
   [quoted_status] INTEGER,
   [place] TEXT REFERENCES [places]([id]),
   [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT,
   FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]),
   FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id])
);
CREATE INDEX [idx_tweets_source]
    ON [tweets] ([source]);
Powered by Datasette · Queries took 1808.494ms