home / twitter

tweets

This is data scraped from swyx's timeline! See blog post

1 row where in_reply_to_screen_name = "passle_" and user = 33521530 sorted by lang

✎ View and edit SQL

This data as json, CSV (advanced)

user 1 ✖

  • swyx · 1 ✖

is_quote_status 1 ✖

  • 0 1

in_reply_to_screen_name 1 ✖

  • passle_ · 1 ✖

created_at (date) 1 ✖

  • 2021-09-05 1
id user created_at full_text retweeted_status quoted_status place source truncated display_text_range in_reply_to_status_id in_reply_to_user_id in_reply_to_screen_name geo coordinates contributors is_quote_status retweet_count favorite_count favorited retweeted possibly_sensitive lang ▼ scopes
1434501288788697088 swyx 33521530 2021-09-05T12:58:53+00:00 @passle_ @reactjs WCs are definitely one way to get there! what i do enjoy about hooks is they are “headless” so you get to take them apart or compose them however you like. that is genius. best way out of this ive seen is reusable statecharts (mentioned in other reply chain)       Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [18, 276] 1434476696238018563 4874949729 passle_       0 0 4 0 0   en  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [tweets] (
   [id] INTEGER PRIMARY KEY,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [full_text] TEXT,
   [retweeted_status] INTEGER,
   [quoted_status] INTEGER,
   [place] TEXT REFERENCES [places]([id]),
   [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT,
   FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]),
   FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id])
);
CREATE INDEX [idx_tweets_source]
    ON [tweets] ([source]);
Powered by Datasette · Queries took 2204.048ms