tweets
1 row where "created_at" is on date 2021-09-22 and user = 35109534 sorted by lang
This data as json, CSV (advanced)
id | user | created_at | full_text | retweeted_status | quoted_status | place | source | truncated | display_text_range | in_reply_to_status_id | in_reply_to_user_id | in_reply_to_screen_name | geo | coordinates | contributors | is_quote_status | retweet_count | favorite_count | favorited | retweeted | possibly_sensitive | lang ▼ | scopes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1440470398152454144 | Eugene Yan 35109534 | 2021-09-22T00:18:00+00:00 | When given a problem, solve it without machine learning first. In this opinionated piece, I'll share: • Similar views from other ML practitioners • Simple and faster alternatives • Examples of non-ML successes • When to start using machine learning https://eugeneyan.com/writing/first-rule-of-ml/ | Twitter Web App 1f89d6a41b1505a3071169f8d0d028ba9ad6f952 | 0 | [0, 274] | 0 | 73 | 266 | 0 | 1 | 0 | en |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [tweets] ( [id] INTEGER PRIMARY KEY, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [full_text] TEXT, [retweeted_status] INTEGER, [quoted_status] INTEGER, [place] TEXT REFERENCES [places]([id]), [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT, FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]), FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id]) ); CREATE INDEX [idx_tweets_source] ON [tweets] ([source]);