home / twitter

tweets

This is data scraped from swyx's timeline! See blog post

1 row where "created_at" is on date 2021-09-14, retweet_count = 1 and user = 33521530 sorted by lang

✎ View and edit SQL

This data as json, CSV (advanced)

user 1 ✖

  • swyx · 1 ✖

created_at (date) 1 ✖

  • 2021-09-14 · 1 ✖
id user created_at full_text retweeted_status quoted_status place source truncated display_text_range in_reply_to_status_id in_reply_to_user_id in_reply_to_screen_name geo coordinates contributors is_quote_status retweet_count favorite_count favorited retweeted possibly_sensitive lang ▼ scopes
1437730180068483077 swyx 33521530 2021-09-14T10:49:21+00:00 @danluu people have a hunger for depth; but many options. therefore we must demonstrate quality early, or build reputation for it over time. https://twitter.com/Julian/status/1348001394758799361   1348001394758799361 1348001394758799361   Twitter for iPhone 95f3aaaddaa45937ac94765e0ddb68ba2be92d20 0 [8, 140] 1437539076324790274 18275645 danluu       1 1 9 0 0 0 en  

Advanced export

JSON shape: default, array, newline-delimited, object

CSV options:

CREATE TABLE [tweets] (
   [id] INTEGER PRIMARY KEY,
   [user] INTEGER REFERENCES [users]([id]),
   [created_at] TEXT,
   [full_text] TEXT,
   [retweeted_status] INTEGER,
   [quoted_status] INTEGER,
   [place] TEXT REFERENCES [places]([id]),
   [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT,
   FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]),
   FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id])
);
CREATE INDEX [idx_tweets_source]
    ON [tweets] ([source]);
Powered by Datasette · Queries took 1890.479ms