tweets
1 row where display_text_range = "[12, 296]"
This data as json, CSV (advanced)
id ▼ | user | created_at | full_text | retweeted_status | quoted_status | place | source | truncated | display_text_range | in_reply_to_status_id | in_reply_to_user_id | in_reply_to_screen_name | geo | coordinates | contributors | is_quote_status | retweet_count | favorite_count | favorited | retweeted | possibly_sensitive | lang | scopes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1420188922504642563 | swyx 33521530 | 2021-07-28T01:06:39+00:00 | @AdamSinger look at it this way - I browse the available content at 2-3x, then slow down to absorb at 1x. If it is clearly valuable, I will replay multiple times + transcribe to progressively summarize (h/t @fortelabs) You do the same with articles & newsletters too! Scan, then read deeply. | Twitter Web App 1f89d6a41b1505a3071169f8d0d028ba9ad6f952 | 0 | [12, 296] | 1420183712717844482 | 14031032 | AdamSinger | 0 | 0 | 0 | 0 | 0 | en |
Advanced export
JSON shape: default, array, newline-delimited, object
CREATE TABLE [tweets] ( [id] INTEGER PRIMARY KEY, [user] INTEGER REFERENCES [users]([id]), [created_at] TEXT, [full_text] TEXT, [retweeted_status] INTEGER, [quoted_status] INTEGER, [place] TEXT REFERENCES [places]([id]), [source] TEXT REFERENCES [sources]([id]), [truncated] INTEGER, [display_text_range] TEXT, [in_reply_to_status_id] INTEGER, [in_reply_to_user_id] INTEGER, [in_reply_to_screen_name] TEXT, [geo] TEXT, [coordinates] TEXT, [contributors] TEXT, [is_quote_status] INTEGER, [retweet_count] INTEGER, [favorite_count] INTEGER, [favorited] INTEGER, [retweeted] INTEGER, [possibly_sensitive] INTEGER, [lang] TEXT, [scopes] TEXT, FOREIGN KEY([retweeted_status]) REFERENCES [tweets]([id]), FOREIGN KEY([quoted_status]) REFERENCES [tweets]([id]) ); CREATE INDEX [idx_tweets_source] ON [tweets] ([source]);